extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×S3).1D4 = C23.5D12 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).1D4 | 192,301 |
(C22×S3).2D4 = Q8⋊5D12 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 24 | 4+ | (C2^2xS3).2D4 | 192,381 |
(C22×S3).3D4 = C42⋊5D6 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).3D4 | 192,384 |
(C22×S3).4D4 = C22⋊C4⋊D6 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).4D4 | 192,612 |
(C22×S3).5D4 = D12⋊18D4 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 24 | 8+ | (C2^2xS3).5D4 | 192,757 |
(C22×S3).6D4 = D12.39D4 | φ: D4/C1 → D4 ⊆ Out C22×S3 | 48 | 8+ | (C2^2xS3).6D4 | 192,761 |
(C22×S3).7D4 = C6.C22≀C2 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).7D4 | 192,231 |
(C22×S3).8D4 = (C2×C4).21D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).8D4 | 192,233 |
(C22×S3).9D4 = C6.(C4⋊D4) | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).9D4 | 192,234 |
(C22×S3).10D4 = S3×C23⋊C4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 24 | 8+ | (C2^2xS3).10D4 | 192,302 |
(C22×S3).11D4 = D6⋊C8⋊11C2 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).11D4 | 192,338 |
(C22×S3).12D4 = C3⋊C8⋊1D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).12D4 | 192,339 |
(C22×S3).13D4 = D4⋊3D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).13D4 | 192,340 |
(C22×S3).14D4 = C3⋊C8⋊D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).14D4 | 192,341 |
(C22×S3).15D4 = D4.D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).15D4 | 192,342 |
(C22×S3).16D4 = C24⋊1C4⋊C2 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).16D4 | 192,343 |
(C22×S3).17D4 = Q8.11D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).17D4 | 192,367 |
(C22×S3).18D4 = Q8⋊4D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).18D4 | 192,369 |
(C22×S3).19D4 = C3⋊(C8⋊D4) | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).19D4 | 192,371 |
(C22×S3).20D4 = D6⋊C8.C2 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).20D4 | 192,373 |
(C22×S3).21D4 = C8⋊Dic3⋊C2 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).21D4 | 192,374 |
(C22×S3).22D4 = C3⋊C8.D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).22D4 | 192,375 |
(C22×S3).23D4 = C42⋊3D6 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).23D4 | 192,380 |
(C22×S3).24D4 = C24⋊7D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).24D4 | 192,424 |
(C22×S3).25D4 = C4.Q8⋊S3 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).25D4 | 192,425 |
(C22×S3).26D4 = C8.2D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).26D4 | 192,426 |
(C22×S3).27D4 = C6.(C4○D8) | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).27D4 | 192,427 |
(C22×S3).28D4 = C2.D8⋊S3 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).28D4 | 192,444 |
(C22×S3).29D4 = C8⋊3D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).29D4 | 192,445 |
(C22×S3).30D4 = C2.D8⋊7S3 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).30D4 | 192,447 |
(C22×S3).31D4 = C24.25D6 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).31D4 | 192,518 |
(C22×S3).32D4 = C24.27D6 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).32D4 | 192,520 |
(C22×S3).33D4 = (C2×C4)⋊3D12 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).33D4 | 192,550 |
(C22×S3).34D4 = (C2×C12).289D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).34D4 | 192,551 |
(C22×S3).35D4 = Dic6⋊D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).35D4 | 192,717 |
(C22×S3).36D4 = C24⋊12D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).36D4 | 192,718 |
(C22×S3).37D4 = D12⋊7D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).37D4 | 192,731 |
(C22×S3).38D4 = Dic6.16D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).38D4 | 192,732 |
(C22×S3).39D4 = C24⋊8D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).39D4 | 192,733 |
(C22×S3).40D4 = D12.17D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).40D4 | 192,746 |
(C22×S3).41D4 = C24.36D4 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).41D4 | 192,748 |
(C22×S3).42D4 = SD16⋊D6 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).42D4 | 192,1327 |
(C22×S3).43D4 = D8⋊4D6 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).43D4 | 192,1332 |
(C22×S3).44D4 = D24⋊C22 | φ: D4/C2 → C22 ⊆ Out C22×S3 | 48 | 8+ | (C2^2xS3).44D4 | 192,1336 |
(C22×S3).45D4 = D6⋊(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).45D4 | 192,226 |
(C22×S3).46D4 = D4⋊2S3⋊C4 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).46D4 | 192,331 |
(C22×S3).47D4 = D6⋊D8 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).47D4 | 192,334 |
(C22×S3).48D4 = D6⋊SD16 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).48D4 | 192,337 |
(C22×S3).49D4 = C4⋊C4.150D6 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).49D4 | 192,363 |
(C22×S3).50D4 = D6⋊2SD16 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).50D4 | 192,366 |
(C22×S3).51D4 = D6⋊1Q16 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).51D4 | 192,372 |
(C22×S3).52D4 = (S3×C8)⋊C4 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).52D4 | 192,419 |
(C22×S3).53D4 = C8⋊8D12 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).53D4 | 192,423 |
(C22×S3).54D4 = C8.27(C4×S3) | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).54D4 | 192,439 |
(C22×S3).55D4 = D6⋊2D8 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).55D4 | 192,442 |
(C22×S3).56D4 = D6⋊2Q16 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).56D4 | 192,446 |
(C22×S3).57D4 = C4⋊(D6⋊C4) | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).57D4 | 192,546 |
(C22×S3).58D4 = D6⋊3D8 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).58D4 | 192,716 |
(C22×S3).59D4 = C24⋊14D4 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).59D4 | 192,730 |
(C22×S3).60D4 = D6⋊3Q16 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).60D4 | 192,747 |
(C22×S3).61D4 = C2×D8⋊3S3 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).61D4 | 192,1315 |
(C22×S3).62D4 = C2×Q8.7D6 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).62D4 | 192,1320 |
(C22×S3).63D4 = C2×D24⋊C2 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).63D4 | 192,1324 |
(C22×S3).64D4 = S3×C4○D8 | φ: D4/C4 → C2 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).64D4 | 192,1326 |
(C22×S3).65D4 = C22.58(S3×D4) | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).65D4 | 192,223 |
(C22×S3).66D4 = (C2×C4)⋊9D12 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).66D4 | 192,224 |
(C22×S3).67D4 = D6⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).67D4 | 192,227 |
(C22×S3).68D4 = C4⋊C4⋊19D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).68D4 | 192,329 |
(C22×S3).69D4 = D4⋊(C4×S3) | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).69D4 | 192,330 |
(C22×S3).70D4 = D4⋊D12 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).70D4 | 192,332 |
(C22×S3).71D4 = D6.D8 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).71D4 | 192,333 |
(C22×S3).72D4 = D6⋊5SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).72D4 | 192,335 |
(C22×S3).73D4 = D6.SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).73D4 | 192,336 |
(C22×S3).74D4 = (S3×Q8)⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).74D4 | 192,361 |
(C22×S3).75D4 = Q8⋊7(C4×S3) | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).75D4 | 192,362 |
(C22×S3).76D4 = D6.1SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).76D4 | 192,364 |
(C22×S3).77D4 = Q8⋊3D12 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).77D4 | 192,365 |
(C22×S3).78D4 = D6⋊Q16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).78D4 | 192,368 |
(C22×S3).79D4 = D6.Q16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).79D4 | 192,370 |
(C22×S3).80D4 = S3×C4≀C2 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 24 | 4 | (C2^2xS3).80D4 | 192,379 |
(C22×S3).81D4 = C8⋊(C4×S3) | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).81D4 | 192,420 |
(C22×S3).82D4 = D6.2SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).82D4 | 192,421 |
(C22×S3).83D4 = D6.4SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).83D4 | 192,422 |
(C22×S3).84D4 = C8⋊S3⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).84D4 | 192,440 |
(C22×S3).85D4 = D6.5D8 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).85D4 | 192,441 |
(C22×S3).86D4 = D6.2Q16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).86D4 | 192,443 |
(C22×S3).87D4 = C24.59D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).87D4 | 192,514 |
(C22×S3).88D4 = C24.23D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).88D4 | 192,515 |
(C22×S3).89D4 = D6⋊C4⋊6C4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).89D4 | 192,548 |
(C22×S3).90D4 = D12⋊D4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).90D4 | 192,715 |
(C22×S3).91D4 = D6⋊6SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).91D4 | 192,728 |
(C22×S3).92D4 = D6⋊8SD16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).92D4 | 192,729 |
(C22×S3).93D4 = D6⋊5Q16 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).93D4 | 192,745 |
(C22×S3).94D4 = C2×C23.9D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).94D4 | 192,1047 |
(C22×S3).95D4 = C2×D6.D4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).95D4 | 192,1064 |
(C22×S3).96D4 = S3×C22.D4 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).96D4 | 192,1211 |
(C22×S3).97D4 = C2×D8⋊S3 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).97D4 | 192,1314 |
(C22×S3).98D4 = C2×Q8⋊3D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).98D4 | 192,1318 |
(C22×S3).99D4 = C2×D4.D6 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).99D4 | 192,1319 |
(C22×S3).100D4 = C2×Q16⋊S3 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).100D4 | 192,1323 |
(C22×S3).101D4 = S3×C8⋊C22 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 24 | 8+ | (C2^2xS3).101D4 | 192,1331 |
(C22×S3).102D4 = S3×C8.C22 | φ: D4/C22 → C2 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).102D4 | 192,1335 |
(C22×S3).103D4 = S3×C2.C42 | φ: trivial image | 96 | | (C2^2xS3).103D4 | 192,222 |
(C22×S3).104D4 = S3×D4⋊C4 | φ: trivial image | 48 | | (C2^2xS3).104D4 | 192,328 |
(C22×S3).105D4 = S3×Q8⋊C4 | φ: trivial image | 96 | | (C2^2xS3).105D4 | 192,360 |
(C22×S3).106D4 = S3×C4.Q8 | φ: trivial image | 96 | | (C2^2xS3).106D4 | 192,418 |
(C22×S3).107D4 = S3×C2.D8 | φ: trivial image | 96 | | (C2^2xS3).107D4 | 192,438 |
(C22×S3).108D4 = C2×S3×C22⋊C4 | φ: trivial image | 48 | | (C2^2xS3).108D4 | 192,1043 |
(C22×S3).109D4 = C2×S3×C4⋊C4 | φ: trivial image | 96 | | (C2^2xS3).109D4 | 192,1060 |
(C22×S3).110D4 = C2×S3×D8 | φ: trivial image | 48 | | (C2^2xS3).110D4 | 192,1313 |
(C22×S3).111D4 = C2×S3×SD16 | φ: trivial image | 48 | | (C2^2xS3).111D4 | 192,1317 |
(C22×S3).112D4 = C2×S3×Q16 | φ: trivial image | 96 | | (C2^2xS3).112D4 | 192,1322 |